Stereospecific Formation of 1,3-Disilacyclobutanes by **Photochemical Treatment of Bimetallic Precursors** $FpCH_2SiR_2SiR_2CH_2Fp$ ($Fp = (\eta^5 - C_5H_5)Fe(CO)_2$)

Yongqiang Zhang, Francisco Cervantes-Lee, and Keith H. Pannell*

> Department of Chemistry, University of Texas at El Paso El Paso, Texas 79968-0513

> > Received December 16, 1999 Revised Manuscript Received March 1, 2000

The activation of the silicon-silicon bond by transition metal complexes is an area of chemistry that has implications in catalysis and materials science.¹ Our studies on the chemistry of oligosilyl compounds substituted with the Fp group showed that α -elimination chemistry results in the intermediacy of iron-silylene complexes, $Fp = (\eta^5 - C_5 H_5) Fe(CO)_2$). These intermediates lead to either silvlene eliminations, eq 1, or rearrangements, eq 2; both may be effected catalytically under appropriate conditions.^{2,3}

$$Fp-SiMe_2SiMe_3 \rightarrow Fp-SiMe_3 + [SiMe_2]$$
 (1)

$$Fp-SiMe_2SiMe_2SiMe_3 \rightarrow FpSi(SiMe_3)_3$$
 (2)

When the metal substituent is attached to the oligosilyl group via a bridging methylene group, β -elimination chemistry results in the formation of iron-silene intermediates that lead either to rearrangements, eq 3 (R = H, (SiMe₂)_nSiMe₃, GeMe₃), or silene elimination, eq 4 (R = GeMe₃, Wp = $(\eta^5 - C_5H_5)W(CO)_3$).^{2a,4}

$$Fp-CH_2SiMe_2R \rightarrow Fp-SiMe_2CH_2R$$
 (3)

$$Wp-CH_2SiMe_2R \rightarrow Wp-R + Me_2Si=CH_2 \qquad (4)$$

The silene metal intermediates involved in eq 3 (R = H)^{4a} have been characterized only by low-temperature matrix-isolation techniques.⁵ However, many stable transition metal silene complexes have been isolated and characterized by the research groups of Berry and Tilley.6

Scheme 1

Me₃Si

Me

Me Me

The related chemistry of bimetallic systems is less studied. Scheme 1 illustrates the sequential formation of silylene iron complexes by photolysis of FpSiMe₂SiMe₂Fp,⁷ indicating the

(3) (a) Tobita, H.; Ueno, K.; Ogino, H. Chem. Lett. **1986**, 1777. (b) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. **1988**, 110, 4092. (4) (a) Pannell, K. H. J. Organomet. Chem. 1970, 21, 17. (b) Sharma, S.; Kapoor, R. N.; Cervantes-Lee, F.; Pannell, K. H. *Polyhedron* **1991**, *10*, 1177. (c) Pannell, K. H.; Kobayashi, T.; Kapoor, R. N. *Organometallics* **1992**, *11*, 1, 2229. (d) Sharma, S.; Pannell, K. H. *Organometallics* **1993**, *12*, 2, 3979.

(5) Randolf, C. L.; Wrighton, M. S. Organometallics 1987, 6, 365.

Figure 1. Structure of 2a.

significant differences in chemistry that may exist due to the capacity for metal-metal (Fe-Fe) interactions.

We have now synthesized the bimetallic complexes FpCH₂-MeRSiSiRMeCH₂Fp, R = Me(1) and Ph(2), and report an unprecedented photoreaction leading to the quantitative formation of 1,3-disilacyclobutanes. Complex 18 was prepared in 64% yield from the reaction of ClCH₂Me₂SiSiMe₂CH₂Cl⁹ with [Fp]⁻Na⁺, while similar treatment of ClCH2MePhSiSiMePhCH2Cl10 afforded 2 in 24% yield, eq 5.

$$[Fp]^{Na^{+}} + [ClCH_{2}SiMeR]_{2} \rightarrow FpCH_{2}SiMeRSiMeRCH_{2}Fp (5)$$

¹H and ¹³C NMR spectra of **2** indicate a mixture of two isomers, with one isomer dominant (meso/dl = 5:1). Recrystallization of 2 from a mixture of CH₂Cl₂/hexane yielded prisms and the isomers **2a** (meso) and **2b** (dl) could be separated mechanically.¹¹

The single-crystal structure of 2a is illustrated in Figure 1.¹² The molecule consists of two identical $[(\eta^5-C_5H_5)Fe(CO)_2CH_2-$ SiMePh] moieties bonded by a Si–Si bond and has C_i symmetry. The Fe-C(8) bond length (2.092(3) Å) is in the range of the normal Fe-C (sp³) bond distances (2.08-2.16 Å).¹³ The Si-Si

(7) (a) Pannell, K. H.; Sharma, H. K. Organometallics 1991, 10, 954. (b)

(a) Hamabi, K. H. Sha Ha, H. K. Organometallics **1991**, *10*, 959. (8) Mp 104–6 °C. Anal. Calcd. for $C_{20}H_{26}Fe_2O_4Si_2$: C, 48.21; H, 5.26. Found: C, 47.76; H, 5.54. ¹H NMR (C_6D_6) δ 0.16 (s, 4H, CH₂), 0.47 (s, 12H, SiMe), 4.27 (s, 8H, Cp). ¹³C NMR (C_6D_6) δ –23.6 (CH₂), 0.16 (SiMe), 85.0 (Cp), 218.3 (CO). ²⁹Si NMR (C_6D_6) δ –6.03. IR (ν_{C0} , cm⁻¹) 2009(s), 1958(s)

(9) Kobayashi, T.; Pannell, K. H. Organometallics 1991, 10, 1960.

(9) Kobayashi, T.; Pannell, K. H. Organometallics **1991**, *10*, 1960. (10) ClCH₂MePhSiSiPhMeCH₂Cl was similarly synthesized as a mixture of two isomers (1:0.7) in 85% by a literature procedure.⁹ ¹H NMR (C₆D₆) δ 0.42 (s, 6H, SiMe), 2.93 (AB, ²J = 13.6 Hz, 4H, CH₂), 7.11–7.34 (m, 10H, Ph), 0.43 (s, 6H, SiMe), 2.92 (AB, ²J = 13.5 Hz, 4H, CH₂), 7.11–7.34 (m, 10H, Ph). ¹³C NMR (C₆D₆) δ –6.18, –5.91 (SiMe), 29.5, 29.6 (CH₂), 128.5, 129.9, 134.6, 134.7 (Ph). ²⁹Si NMR (C₆D₆) δ –18.6, –18.5. (11) For **2a**: Mp 146–8 °C. Anal. Calcd for C₃₀H₃₀Fe₂O₄Si₂: C, 57.89; H, 4.86. Found: C, 58.17; H, 4.39. ¹H NMR (C₆D₆) δ 0.02 (d, ²J = 12.6 Hz, 2H, CH₂), 0.44 (d, ²J = 12.6 Hz, 2H, CH₂), 0.66 (s, 6H, SiMe), 3.97 (s, 8H, C₁₀, **7**, 37, 755 (m, m, 10H, Ph). ¹⁵C NMR (Ch₂) (Ch₂), 2.46 (CH₂).

(SiNe), 84.6 (Cp), 128.0, 128.5, 134.7, 142.4 (Pn), 217.80, 217.93 (CO), 2731 NMR (C₆D₆) δ –9.00. IR (ν_{CO} , cm⁻¹) 2011(s), 1959(s). For **2b**: Mp 116–8 °C. Anal. Calcd. for C₃₀H₃₀Fe₂O₄Si₂: C, 57.89; H, 4.86. Found: C, 57.10; H, 3.78. ¹H NMR (C₆D₆) δ 0.04 (d, ²J = 12.6 Hz, 2H, CH₂), 0.43 (d, ²J = 12.6 Hz, 2H, CH₂), 0.64 (s, 6H, SiMe), 4.00 (s, 8H, Cp), 7.22, 7.57 (m, m, 10H, Ph). ¹³C NMR (C₆D₆) δ –26.8 (CH₂), –2.16 (SiMe), 84.7 (Cp), 128.0, 128.5, 134.7, 142.3 (Ph), 217.9 (CO). ²⁹Si NMR (C₆D₆) δ –9.07. IR (ν_{CO} , cm⁻¹) 2009(c) 1959(c) 2009(s), 1959(s).

⁽¹⁾ Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351. (1) Shanha, H. K., Fahneri, K. H. Chem. Rev. **195**, *95*, 151. (2) (a) Pannell, K. H.; Rice, J. J. Organomet. Chem. **1974**, 78, C35. (b) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. P. Organometallics **1986**, *5*, 1056. (c) Pannell, K. H.; Wang, L.-J.; Rozell, J. M. Organometallics **1989**, *8*, 550. (d) Jones, K.; Pannell, K. H. J. Am. Chem. Soc. **193**, *115*, 11336. (e) Panell, K. H.; Brun, M.-C.; Sharma, H. K.; Jones, K.; Sharma, S. Organometallics **1994**, *13*, 3, 1075.

^{(6) (}a) Koloshi, T. S.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1990, 112, 6405. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112, 4079.

bond length (2.359(1) Å) is equivalent to those in LFeSiMe₂-SiMe₃ (2.361–2.364 Å)¹⁴ and shorter than that of the bimetallic complex FpSiMe₂SiMe₂Fp (2.390(4) Å).¹⁵

Irradiation of a C_6D_6 solution of **1** with a medium-pressure Hg lamp in a sealed NMR tube resulted in the quantitative formation of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and 1,3-tetramethyldisilacy-clobutane **3** (eq 6).¹⁶

Photolysis of **2a** (meso) for 2 h afforded only the *trans*-1,3disilacyclobutane **4t**, while similar photolysis of **2b** (dl) afforded only the *cis*-1,3-disilacyclobutane **4c**, eq $7.^{17}$ The photoreactions are stereospecific.

It is reported that "unstable" silenes carrying small alkyl substituents readily dimerize in a head-to-tail fashion to yield 1,3disilacyclobutanes,¹⁸ while stable silenes, e.g. $(Me_3Si)_2Si=C-(OSiMe_3)R$, preferentially yield the head-to-head dimers, 1,2disilacyclobutanes.¹⁹ Since the photoreactions involving free silene yield a mixture of the cis and trans isomers of 1,3-disilacyclobutanes, it is unlikely that free silene was produced by photolysis of 1 and 2.²⁰ Furthermore, the chemistry noted in eq 4 in which silene is liberated never produced silacyclobutanes.^{4b} To further prove this point we have photolyzed a mixture of 1 and 2a and

(12) Data collected using a Siemens R3m/V diffractometer and Mo K α radiation. **2a**: triclinic; space group $P\bar{1}$; a = 8.607(2) Å, b = 9.509(2) Å, c = 9.819(2) Å, $\alpha = 86.84(2)^{\circ}$, $\beta = 64.95(1)^{\circ}$, $\gamma = 86.58(2)^{\circ}$; Z = 1; R = 4.13; GOF = 1.03. Selected bond distances (Å) and angles (deg): Fe–C(8) 2.092(3), Si–SiA 2.359(1), Fe–C(8)–Si 120.5(1).

2.092(3), Si-SiA 2.359(1), Fe-C(8)-Si 120.5(1), (13) Kruger, C.; Barnett, B. L.; Brauer, D. Structure and Bonding in Organic Iron Compounds; The Organic Chemistry of Iron; Koerner Von Gustorf, E. A., Grevels, F. W., Fischler, I., Eds.; Academic Press: New York, 1978; Vol. 1, p 3.

(14) Pannell, K. H.; Lin, S.-H.; Kapoor, R. N.; Cervantes-Lee, F.; Pinon, M.; Parkanyi, L. Organometallics **1990**, *9*, 2454.

(15) Pannell, K. H.; Cervantes, J.; Parkanyi, L.; Cervantes-Lee, F. Organometallics 1990, 9, 859.

(16) Complex **3** has been characterized by ¹H, ¹³C, and ²⁹Si NMR and GC/ MS. ¹H NMR (C₆D₆) δ 0.12 (s, 4H, CH₂), 0.24 (s, 12H, SiMe₂). ¹³C NMR (C₆D₆) δ 2.56 (SiMe₂), 3.99 (CH2).²⁹Si NMR (C₆D₆) δ –2.54. Mass: *m/e* 144 (M, 20%), 129 (M – Me, 100%). Kriner, W. A. J. Org. Chem. **1964**, 29, 1601.

(17) Compounds **4t** and **4c** have been characterized by ¹H, ¹³C, and ²⁹Si NMR and GC/MS and are in accord with the literature where **4t** and **4c** were separated by preparative GLC and the single-crystal structure of **4t** was also reported. Hayakawa, K.; Tachikawa, M.; Suzuki, T.; Choi, N.; Murakami, M. *Tetrahedron Lett.* **1995**, *36*, 31811.

(18) For reviews see: (a) Gusel'nikov, L. E.; Nametkin, N. S. Chem. Rev.
1979, 79, 529. (b) Baines, K. M.; Brook, A. G. Adv. Organomet. Chem. 1986, 25, 1.

(19) (a) Brook, A. G.; Harris, J. W.; Lennon, J.; El Sheikh, M. J. Am. Chem. Soc. **1979**, 101, 83. (b) Baines, K. M.; Brook, A. G.; Ford, R. R.; Lickiss, P. D.; Saxena, A. K.; Chatterton, W. J.; Sawyer, J. F.; Behnam, B. A. Organometallics **1989**, 8, 693.

(20) (a) Braddock-Wilking, J.; Chiang, M. Y.; Gaspar, P. P. Organometallics **1993**, *12*, 197. (b) Volkova, V. V.; Gusel'nikov, L. E.; Volvina, E. A.; Buravtseva, E. N. Organometallics **1994**, *13*, 4661.

observed no cross-over products; the photoreactions proceed via an intramolecular pathway.

The stereospecific formation of 4 suggests a special interaction of the complexed silenes upon adjacent metal centers prior to elimination of the product. The mechanism presented in Scheme 2 is our current suggestion. Each step must be stereospecific and the transient formation of iron centers which themselves are potentially enantiomeric may play an important role in the stereochemical outcome of the coupling reaction. It is possible that a direct 1,4-elimination reaction and transient 1,2-disilacyclobutanes are involved, but presently we have no evidence for these species. Finally, as is often the case in the area of organosilicon chemistry, early studies by the Kumada group are relevant. In 1977 they reported that the reaction of XCH₂SiMe₂- $SiMe_2CH_2X$ (X = Br, I) with Mg resulted in the formation of 3. Furthermore, 1-metallo-3,4-disilacyclopentanes of Pt and Ni also led to formation of **3** under certain conditions. Bis-silene metal intermediates were suggested.21

Overall the new chemistry presents a very unusual and potentially general route to coupling of reagents bonded to adjacent metals and we are continuing our study to flush out the details and generality of the process.

Acknowledgment. This research was supported by the Robert A. Welch Foundation, Houston, TX (grant no. AH-546).

Supporting Information Available: Listings of crystal data, date collection, solution and refinement, complete atomic coordinates, bond distances and angles, and anisotropic thermal parameters for **2a** and synthetic details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA994392P

⁽²¹⁾ Tamao, K.; Yoshida, J.; Okazaki, S.; Kumada, M. Isr. J. Chem. 1977, 15, 265.